Six New Soybean Varieties Highlight Progress in Developing Healthier Oils at ISU
AMES, Iowa – Soybean farmers will be able to enjoy higher yields from the production of four new ultralow linolenic acid and two low saturate soybean varieties released in November 2008 by the breeding program at Iowa State University. The food industry has widely adopted ultralow linolenic acid oil because it has a long shelf life and does not require chemical hydrogenation, a process which results in the production of undesirable trans-fatty acids. The low-saturate oil is valued by consumers who are seeking to lower the content of undesirable saturated fatty acids in their diet.

The new ultralow linolenic acid varieties IA2096, IA2097, and IA3042 are non-GMO, which provides the opportunity for farmers to receive a premium for both the protein and the oil produced from the plants. The variety IA2098RR will make it possible for farmers who use the herbicide glyphosate to produce ultralow linolenic acid soybeans.

The producers of soybean varieties with low saturated fatty acids will have the opportunity to consider the new non-GMO varieties IA1024 and IA2095. They are higher yielding than current low-saturate varieties and can earn a premium for the farmer for both their non-GMO protein and their improved oil.

Development of varieties at ISU with modified fatty acid composition is made possible through financial support of U.S. soybean farmers through the Iowa Soybean Association and the United Soybean Board. In addition to the ultralow linolenic acid and low saturate soybeans, the ISU project has developed varieties with the combination of mid-oleic and 1% linolenic acids. The oil from these varieties has an even greater shelf life than ultralow linolenic acid oil.

Seed of ISU varieties with modified fatty acid content is available through Julie Minot, mjgus@iastate.edu, at the Iowa State University Research Foundation. Complete information on their field performance in 2008 can be found at http://www.notrans.iastate.edu/pdfs/2008.pdf.